Shortcuts

AvgPool2d

class continual.AvgPool2d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None, dilation=1, temporal_fill='zeros')[source]

Applies a Continual 2D average pooling over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N,C,T,W)(N, C, T, W), output (N,C,Tout,Wout)(N, C, T_{out}, W_{out}) and kernel_size (kT,kW)(kT, kW) can be precisely described as:

out(Ni,Cj,h,w)=1kTkWm=0kT1n=0kW1input(Ni,Cj,stride[0]×h+m,stride[1]×w+n)out(N_i, C_j, h, w) = \frac{1}{kT * kW} \sum_{m=0}^{kT-1} \sum_{n=0}^{kW-1} input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)

If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points.

Note

When stride > 1, the forward_step will only produce non-None values every stride steps.

Note

When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding or the input. Sliding windows that would start in the right padded region are ignored.

The parameters kernel_size, stride, padding can either be:

  • a single int – in which case the same value is used for the height and width dimension

  • a tuple of two ints – in which case, the first int is used for the height dimension, and the second int for the width dimension

Parameters:
  • kernel_size (Union[int, Tuple[int, int]]) – the size of the window

  • stride (Union[int, Tuple[int, int]]) – the stride of the window. Default value is kernel_size

  • padding (Union[int, Tuple[int, int]]) – implicit zero padding to be added on both sides

  • ceil_mode (bool) – when True, will use ceil instead of floor to compute the output shape

  • count_include_pad (bool) – when True, will include the zero-padding in the averaging calculation

  • divisor_override (Optional[int]) – if specified, it will be used as divisor, otherwise size of the pooling region will be used

  • dilation (Union[int, Tuple[int, int]]) – The stride between elements within a sliding window, must be > 0. Only temporal dimension is supported

  • temporal_fill (PaddingMode) – How temporal states are initialized

Shape:
  • Input: (N,C,Tin,Win)(N, C, T_{in}, W_{in})`.

  • Output: (N,C,Tout,Wout)(N, C, T_{out}, W_{out})`, where

    Tout=Tin+2×padding[0]kernel_size[0]stride[0]+1T_{out} = \left\lfloor\frac{T_{in} + 2 \times \text{padding}[0] - \text{kernel\_size}[0]}{\text{stride}[0]} + 1\right\rfloor
    Wout=Win+2×padding[1]kernel_size[1]stride[1]+1W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[1] - \text{kernel\_size}[1]}{\text{stride}[1]} + 1\right\rfloor

Examples:

m = co.AvgPool2d(3, stride=(2, 1))
x = torch.randn(20, 16, 50, 32)
assert torch.allclose(m.forward(x), m.forward_steps(x), atol=1e-7)
Read the Docs v: latest
Versions
latest
stable
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.